When progressing through the lessons, make sure to complete all the topics, before taking a quiz. The quiz is considered to be the last step in lesson completion. If the lesson is completed in a different order, make sure to re-take the quiz to mark the lesson as completed.
Cellular network architecture
Before we can discuss the cellular network technologies used in this course, it is important to understand how a cellular network is formed. Note that this section only contains a simplified explanation, but the terms introduced here are very relevant in further reading about cellular technology.
The first part of the cellular network is the device (called UE) communicating with the cellular tower (called eNB). The UE sends uplink (UL) signals to the eNB and receives downlink (DL) signals from the eNB.
Definition
UE (User equipment): This is the device used by an end-user to communicate over the cellular network.
eNB (Evolved Node B): The hardware connected to the cellular network that communicates directly with the UE’s. These are commonly referred to as “base stations” or “cell towers”.
UL (Uplink): Signal sent from the UE to the eNB.
DL (Downlink): Signal coming from the eNB to the UE.
This part of the network is referred to as E-UTRAN (Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network). Beyond the connection between the UE and the eNB, the E-UTRAN communicates with the Evolved Packet Core (EPC), which then enables communication with the internet. The EPC is composed of several functional entities, most notably the Mobility Management Entity (MME), which manages the connections with the UE’s, and the PDN Gateway (P-GW), which is a gateway to the internet.
Definition
EPC (Evolved Packet Core): The framework that provides the connection to the rest of the internet in cellular networks. It is composed of several functional entities.
E-UTRAN (Evolved UMTS Terrestrial Radio Access Network): The wireless communication technology used in cellular networks.
The need for new cellular technologies
Until recently, things like better quality phone calls and faster internet connections has been the main driver behind the advance of cellular technologies. But with the rise of IoT, a new profile of applications has emerged, giving cellular technologies a new direction for growth. This new applications category is called Machine-type Communications (MTC).
MTC differs from human-generated traffic in both nature and requirements. Consider two people having a phone call: data packets are sent very frequently and in long bursts, requiring very low latency, and traffic is usually symmetric between uplink and downlink. On the other hand, for MTC, data packets are shorter, some delays might be acceptable, traffic is mostly uplink, meaning most signals are sent from the UE, and the number of connected devices per eNB is massive. It is clear that MTC requires different technology than what standard LTE can offer.
3GPP Release 13
To meet these new MTC requirements, 3GPP Release 13 introduced the two cellular technologies: LTE Cat M1 and LTE Cat NB1, also known as LTE-M and Narrowband IoT (NB-IoT), respectively.
The 3GPP (3rd Generation Partnership Project) is the body responsible for developing cellular technologies, and their standards are structured as Releases. This is similar to how the Bluetooth Special Interest Group (SIG) releases versions of the Bluetooth standard, where Bluetooth 4.0 includes the first specification of Bluetooth Low Energy.
Although both technologies were developed with the MTC use-case in mind, there are some key differences that need to be understood before selecting which one to use in your application.
Technical comparison
Choosing the most appropriate cellular IoT technology is key to creating a stable, future-proof, and cost-effective solution. LTE-M and NB-IoT, despite both being LTE-based IoT enablers, have some differences which when understood correctly and taken into account can save resources and time. Let’s discuss some key parameters and see how LTE-M and NB-IoT compare.
Note
NB-IoT encompasses two technologies LTE Cat-NB1 in 3GPP release 13, and LTE Cat-NB2 in release 14. Nordic’s nRF91x1 Series SiP’s all support LTE Cat-NB2, while the nRF9160 does not.
The comparison table shows both NB-IoT technologies, LTE Cat-NB1 is shown in parentheses where they differ.
The table below shows a comparison between the key features of both technologies.
LTE-M
NB-IoT
3GPP
Release 14
Release 14 (Release 13)
Also known as
“eMTC”, “LTE Cat-M1”
“LTE Cat-NB2” (“LTE Cat-NB1”)
Bandwidth
1.4 MHz
180 kHz
Maximum data rate (DL/UL)
300/375 kbps
159/127 kbps (30/60 kbps)
Typical range estimate
11 km
15 km
Latency
50-100 ms
1.5-10 s
Mobility/ cell reselection
Supported
Supported
Roaming
Supported
Limited
Deployment density estimate
Up to 50,000 devices per eNB
Up to 50,000 devices per eNB
Battery lifetime estimate
Up to 10 years
Up to 10 years
LTE-M and NB-IoT Comparison Table
Data rate
Due to the narrowband nature of NB-IoT, it only uses 180 kHz of channel bandwidth. Despite giving a number of advantages, this limits the system data rate to a maximum of 159 kbps. On the other hand, LTE-M uses 1.4 MHz as system bandwidth which can provide downlink data rates of up to 300 kbps. This is among the highest in Low-Power Wide-Area Networks (LPWAN) in general and allows LTE-M to enable downlink-heavy applications, meaning most signals are being sent to the UE.
Definition
LPWAN (Low-power wide-area network): A type of wireless wide area network (WAN) technology designed for long-range communication at a low bit rate among “things”.
Coverage
NB-IoT focuses its power in a narrower band and accepts the decrease in data rate, which gives it an edge over LTE-M when it comes to coverage. Therefore, NB-IoT is more suitable for applications requiring deep penetration where devices can be installed behind concrete walls or in basements as well as applications requiring wide coverage areas. In most normal use cases, there are enough eNB’s available so even though NB-IoT has better range, LTE-M can just reconnect to the next eNB.
Latency
Since LTE-M supports higher data rates, an LTE-M device can send more data in less time, which directly reflects on latency. Therefore, LTE-M provides significantly lower latency than NB-IoT. This makes it more appropriate for applications that require real-time communications.
Power consumption
Power consumption comparisons between the two technologies are not as one-dimensional as the previously discussed parameters. On a purely numerical level, we know that LTE-M supports higher data rates. This means that an LTE-M device requires less time having the radio on to transmit a certain packet, while an NB-IoT device requires more time to transmit this same packet. NB-IoT also uses more time during the attach procedure to the eNB. For the total power consumption of an application, LTE-M is generally more power efficient.
That said, it’s uncommon that LTE-M and NB-IoT receive the same network parameters. This means that in certain areas, NB-IoT might perform better, power-wise.
Definition
Attach procedure: The attach procedure is the procedure in which the UE registers with the network. It is initiated by an attach request from the UE followed by a number of exchanges back and forth between the UE and eNB.
The Online Power Profiler for LTE is a tool that estimates the current consumption values for both LTE-M and NB-IoT based on various network and device parameters, and can be used to estimate which protocol will be best suited for your use case when it comes to power consumption.
Mobility
Mobility in this case means two things. It refers to the support for handovers, and it also means maintaining a connection when the device is moving at relatively high speeds. In both cases, LTE-M has the edge.
Handovers refer to the process of transferring the connection from one eNB to another as the device moves between coverage areas. Handovers are an inherent feature of LTE-M, as a device moves from one coverage area to another it will seamlessly start communication with the eNB covering the new area, without any connection drops.
When the NB-IoT device eventually loses connection with the initial eNB, it will have to attach to the new eNB, also consuming power and time. However, this was significantly improved with the introduction of Cat-NB2, which allows the device to transfer the connection when moving between eNBs, improving the technologies mobility as compared with Cat-NB1.
Despite this improvement, LTE-M is more suitable for applications that require support for mobility, where latency and power consumption are important.
More on this
For more information on what things to consider when selecting which technology to use in your cellular application: nWP044 – Best practices for cellular IoT developmentThis white paper introduces the main aspects and decisions you need to consider before and during your development phase of a low-power cellular IoT product.
Nordic Developer Academy Privacy Policy
1. Introduction
In this Privacy Policy you will find information on Nordic Semiconductor ASA (“Nordic Semiconductor”) processes your personal data when you use the Nordic Developer Academy.
References to “we” and “us” in this document refers to Nordic Semiconductor.
2. Our processing of personal data when you use the Nordic Developer Academy
2.1 Nordic Developer Academy
Nordic Semiconductor processes personal data in order to provide you with the features and functionality of the Nordic Developer Academy. Creating a user account is optional, but required if you want to track you progress and view your completed courses and obtained certificates. If you choose to create a user account, we will process the following categories of personal data:
Email
Name
Password (encrypted)
Course progression (e.g. which course you have completely or partly completed)
Certificate information, which consists of name of completed course and the validity of the certificate
Course results
During your use of the Nordic Developer Academy, you may also be asked if you want to provide feedback. If you choose to respond to any such surveys, we will also process the personal data in your responses in that survey.
The legal basis for this processing is GDPR article 6 (1) b. The processing is necessary for Nordic Semiconductor to provide the Nordic Developer Academy under the Terms of Service.
2.2 Analytics
If you consent to analytics, Nordic Semiconductor will use Google Analytics to obtain statistics about how the Nordic Developer Academy is used. This includes collecting information on for example what pages are viewed, the duration of the visit, the way in which the pages are maneuvered, what links are clicked, technical information about your equipment. The information is used to learn how Nordic Developer Academy is used and how the user experience can be further developed.
2.2 Newsletter
You can consent to receive newsletters from Nordic from within the Nordic Developer Academy. How your personal data is processed when you sign up for our newsletters is described in the Nordic Semiconductor Privacy Policy.
3. Retention period
We will store your personal data for as long you use the Nordic Developer Academy. If our systems register that you have not used your account for 36 months, your account will be deleted.
4. Additional information
Additional information on how we process personal data can be found in the Nordic Semiconductor Privacy Policy and Cookie Policy.
Nordic Developer Academy Terms of Service
1. Introduction
These terms and conditions (“Terms of Use”) apply to the use of the Nordic Developer Academy, provided by Nordic Semiconductor ASA, org. nr. 966 011 726, a public limited liability company registered in Norway (“Nordic Semiconductor”).
Nordic Developer Academy allows the user to take technical courses related to Nordic Semiconductor products, software and services, and obtain a certificate certifying completion of these courses. By completing the registration process for the Nordic Developer Academy, you are agreeing to be bound by these Terms of Use.
These Terms of Use are applicable as long as you have a user account giving you access to Nordic Developer Academy.
2. Access to and use of Nordic Developer Academy
Upon acceptance of these Terms of Use you are granted a non-exclusive right of access to, and use of Nordic Developer Academy, as it is provided to you at any time. Nordic Semiconductor provides Nordic Developer Academy to you free of charge, subject to the provisions of these Terms of Use and the Nordic Developer Academy Privacy Policy.
To access select features of Nordic Developer Academy, you need to create a user account. You are solely responsible for the security associated with your user account, including always keeping your login details safe.
You will able to receive an electronic certificate from Nordic Developer Academy upon completion of courses. By issuing you such a certificate, Nordic Semiconductor certifies that you have completed the applicable course, but does not provide any further warrants or endorsements for any particular skills or professional qualifications.
Nordic Semiconductor will continuously develop Nordic Developer Academy with new features and functionality, but reserves the right to remove or alter any existing functions without notice.
3. Acceptable use
You undertake that you will use Nordic Developer Academy in accordance with applicable law and regulations, and in accordance with these Terms of Use. You must not modify, adapt, or hack Nordic Developer Academy or modify another website so as to falsely imply that it is associated with Nordic Developer Academy, Nordic Semiconductor, or any other Nordic Semiconductor product, software or service.
You agree not to reproduce, duplicate, copy, sell, resell or in any other way exploit any portion of Nordic Developer Academy, use of Nordic Developer Academy, or access to Nordic Developer Academy without the express written permission by Nordic Semiconductor. You must not upload, post, host, or transmit unsolicited email, SMS, or \”spam\” messages.
You are responsible for ensuring that the information you post and the content you share does not;
contain false, misleading or otherwise erroneous information
infringe someone else’s copyrights or other intellectual property rights
contain sensitive personal data or
contain information that might be received as offensive or insulting.
Such information may be removed without prior notice.
Nordic Semiconductor reserves the right to at any time determine whether a use of Nordic Developer Academy is in violation of its requirements for acceptable use.
Violation of the at any time applicable requirements for acceptable use may result in termination of your account. We will take reasonable steps to notify you and state the reason for termination in such cases.
4. Routines for planned maintenance
Certain types of maintenance may imply a stop or reduction in availability of Nordic Developer Academy. Nordic Semiconductor does not warrant any level of service availability but will provide its best effort to limit the impact of any planned maintenance on the availability of Nordic Developer Academy.
5. Intellectual property rights
Nordic Semiconductor retains all rights to all elements of Nordic Developer Academy. This includes, but is not limited to, the concept, design, trademarks, know-how, trade secrets, copyrights and all other intellectual property rights.
Nordic Semiconductor receives all rights to all content uploaded or created in Nordic Developer Academy. You do not receive any license or usage rights to Nordic Developer Academy beyond what is explicitly stated in this Agreement.
6. Liability and damages
Nothing within these Terms of Use is intended to limit your statutory data privacy rights as a data subject, as described in the Nordic Developer Academy Privacy Policy. You acknowledge that errors might occur from time to time and waive any right to claim for compensation as a result of errors in Nordic Developer Academy. When an error occurs, you shall notify Nordic Semiconductor of the error and provide a description of the error situation.
You agree to indemnify Nordic Semiconductor for any loss, including indirect loss, arising out of or in connection with your use of Nordic Developer Academy or violations of these Terms of Use. Nordic Semiconductor shall not be held liable for, and does not warrant that (i) Nordic Developer Academy will meet your specific requirements, (ii) Nordic Developer Academy will be uninterrupted, timely, secure, or error-free, (iii) the results that may be obtained from the use of Nordic Developer Academy will be accurate or reliable, (iv) the quality of any products, services, information, or other material purchased or obtained by you through Nordic Developer Academy will meet your expectations, or that (v) any errors in Nordic Developer Academy will be corrected.
You accept that this is a service provided to you without any payment and hence you accept that Nordic Semiconductor will not be held responsible, or liable, for any breaches of these Terms of Use or any loss connected to your use of Nordic Developer Academy. Unless otherwise follows from mandatory law, Nordic Semiconductor will not accept any such responsibility or liability.
7. Change of terms
Nordic Semiconductor may update and change the Terms of Use from time to time. Nordic Semiconductor will seek to notify you about significant changes before such changes come into force and give you a possibility to evaluate the effects of proposed changes. Continued use of Nordic Developer Academy after any such changes shall constitute your acceptance of such changes. You can review the current version of the Terms of Use at any time at https://academy.nordicsemi.com/terms-of-service/
8. Transfer of rights
Nordic Semiconductor is entitled to transfer its rights and obligation pursuant to these Terms of Use to a third party as part of a merger or acquisition process, or as a result of other organizational changes.
9. Third Party Services
To the extent Nordic Developer Academy facilitates access to services provided by a third party, you agree to comply with the terms governing such third party services. Nordic Semiconductor shall not be held liable for any errors, omissions, inaccuracies, etc. related to such third party services.
10. Dispute resolution
The Terms of Use and any other legally binding agreement between yourself and Nordic Semiconductor shall be subject to Norwegian law and Norwegian courts’ exclusive jurisdiction.